
The Bayesian flip
Correcting the prosecutor’s fallacy

From mammogram results to the O. J. Simpson trial and null hypothesis 
significance testing – William P. Skorupski and Howard Wainer demonstrate 

a straightforward method for avoiding errors in statistical reasoning 
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It is rare that a case before the US Supreme 
Court hinges on a subtle statistical issue, yet 
that is precisely what occurred on 11 January 
2010 in the case of Troy Brown – a man 
convicted of the rape of a 9-year-old girl. The 
evidence of Brown’s guilt, excluding DNA, 
was both circumstantial and equivocal. 
However, the jury’s guilty verdict was 
influenced at least in part by the prosecution’s 
claim that only one in 3 million random 
people would have the same DNA profile 
as the rapist, and hence there was only a 
0.000 033% chance that Brown was innocent.

Upon appeal of the case, the defence 
argued that the conclusions drawn from 
the statistics cited by the prosecution were 
incorrect, and were an example of what 
Thompson and Shumann1 famously called 
“the prosecutor’s fallacy”. The Supreme Court, 
writing in its decision on the Brown case, 
described the fallacy as:

the assumption that the random match 
probability is the same as the probability 
that the defendant was not the source 
of the DNA sample. … (“Let P equal 
the probability of a match, given the evi-
dence genotype. The fallacy is to say that 
P is also the probability that the DNA at 
the crime scene came from someone oth-
er than the defendant”). … It is further 
error to equate source probability with 
probability of guilt. (bit.ly/1BcLATk)

Restating this both more succinctly, and in 
terms better suited to a statistically literate 
readership, the prosecutor’s fallacy is to 
calculate P(evidence | innocence) and interpret 
it as P(innocence | evidence). It may be true 
that if the accused were innocent, there is only 
one chance in 3 million of a DNA match. But 
the DNA match does not necessarily imply 
that there is only one chance in 3 million 
of the accused being innocent. Stated more 
generally, the prosecutor’s fallacy is

P(A | B) = P(B | A)	 (1)

We know, from Bayes’ rule, that

P(A | B) = P(B | A) P(A)/P(B)	 (2)

Equation (1) is only true when the marginal 
probabilities are equal, P(A) = P(B), or in 
the Brown case, when the unconditional 
probability of the observed data is equal to the 
unconditional probability of innocence. Such 
situations are not commonly found in practice.

In many scientific and decision-making 
investigations we may be presented with 
P(data | theory), the probability of observing 
what we have observed conditional on an 
unknown – the truth of our theory. Our 
theory may be the innocence or guilt of a 
defendant, or perhaps the status of a null versus 
alternative hypothesis test. But what we would 
really like to know is the probability that our 
theory is correct, given what we have observed: 
P(theory | data). But how are we to compute 
this? From the earliest statistics course, in 
which we assess the fairness of flipped coins, we 
calculate the probability from the theory – if 
the coin is fair P(heads) = P(tails) = 0.5. We 
ascertain, under this model of fairness, how 
likely it is that we would get the observed 

proportion of heads to tails, P(heads | fairness). 
If we confuse that with P(fairness | heads), we 
are guilty of this statistical fallacy.

Even a cursory glance through the social 
science literature shows that prosecutors are 
not unique in drawing incorrect inferences 
from probabilities provided by traditional 
null hypothesis (H0) tests. In the 1920s, 
R. A. Fisher laid out the basic ideas of the 
approach that has come to be called the 
“likelihood principle”.2 Assuming a sampling 
distribution for the data, given an underlying 
theory, is frequently treated as a way to test 
the plausibility of the theory. However, this 
kind of thinking can get us into trouble if 
we are not careful. It is typical for scientific 
papers to report findings that are “statistically 
significant” in the results, and then treat 
those results as evidence of the alternative 
hypothesis in the discussion. Few say 
anything as precise as “these data would be 
unlikely if the null hypothesis were true”. Too 

often we see P(data | H0) reported and treated 
as if it were P(H0 | data). Why the switch?

The well-known Bayesian statistician, 
Melvin Novick famously referred to 
P(data | H0) as a “poor answer to an 
uninteresting question”. Novick’s observation 
is echoed by usage. Indeed, in February this 
year the journal Basic and Applied Social 
Psychology went so far as to ban the use of 
null hypothesis testing in favour of descriptive 
measures such as effect sizes. While the ban 
does permit the use of Bayesian inference 
on a case-by-case basis, we are prepared to 
make a stronger argument in favour of these 
methods. The problem that persists is that 
users of statistics would like P(H0 | data) but 
do not know how to get it. In some very real 
sense they have heeded the advice given by 
Stephen Stills in his 1970 song: “If you can’t 
be with the one you love, love the one you’re 
with.” Perhaps getting the right answer was 
too difficult in the distant past, but not today. 
There is no longer any reason to settle for the 
P you’re with; you can be with the P you love.

Introducing the Bayesian Flip

To move from P(data | theory) to 
P(theory | data), we need to do the Bayesian 
flip. We illustrate the importance of this with 
a vital example. 

Every year in the United States 38 million 
women are tested for breast cancer with 
mammograms. Of these, 140 000 have cancer. 
Mammograms have been determined to be 
90% accurate for women with breast cancer. 
This figure was calculated by tallying all of 
the women who were eventually determined 
to have breast cancer and looking back to see 
if their initial mammograms were positive, 
thus: P(+mammogram | cancer) = 0.90 
and, using a similar empirical investigation, 
P(+mammogram | no cancer) = 0.10. These 
two values are referred to as sensitivity (or 
power) and the false positive (or Type I 
error) rate, respectively. That they add up to 
1.00 is a coincidence; they are not, in general, 
complementary. It is important to know that 
a test is both powerful and has a relatively low 
rate of false positives. But when one is faced 
with a positive mammogram result, these are 
hardly useful. We administer a mammogram 
because we do not know whether or not 
someone has cancer. What we want to know is 

P(cancer | +mammogram)	 (3)

In many investigations 
we may be presented with 
P(data | theory), but what 
we would really like to 
know is P(theory | data): 
the probability that our 
theory is correct, given what 
we have observed
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We can calculate what we want from what 
we know using equation (2), but for now 
we will take a short-cut and recognise 
that the probability in (3) is a fraction 
that has as its numerator the number of 
women annually diagnosed with breast 
cancer via mammograms, or 140 000, and 
as its denominator the number of positive 
mammograms (including both true cancer 
cases and false positives):

P(cancer | +mammogram) = 

True positives

(True positives + False positives)

	 = 140 000 / (140 000 + 0.1 × 38 million) 
 	 = 140 000 / (140 000 + 3 800 000)
 	 = 140 000 / 3 940 000 = 0.036 = 3.6%

Thus, if an asymptomatic woman receives 
the dreadful news that her mammogram 
has come back positive, more than 96% of 
the time it is a false positive – she is fine. 
The dramatic difference between the 90% 
statistical power of the test and its 3.6% 
accuracy demonstrates the importance of not 
confusing the former with the latter; we must 
do the Bayesian flip.

The defence attorney’s fallacy:  
the O. J. Simpson trial

Thompson and Shumann1 named both 
the “prosecutor’s fallacy” and the “defence 
attorney’s fallacy”; both sides of the aisle have 
engaged in this erroneous thinking. A famous 
court case from recent history that used 
probability to discuss the value of evidence 
was the trial of O. J. Simpson. 

In 1994, O. J. Simpson, an actor and 
former professional American football player, 
was accused of murdering his ex-wife, Nicole 
Brown Simpson. News of this court case 
filled the media for months, so we can skip 
the details. Of relevance here is that during 
the trial, Alan Dershowitz, an advisor to 
Simpson’s defence attorneys, claimed that 
Simpson’s previous accusation of spousal 
abuse was not particularly relevant. The 
evidence was that only about one in 2500 
men who batter their significant others (wives, 
girlfriends) go on to kill them. 

Dershowitz’s statement, though backed 
by evidence, was probability misapplied. In 
a 1995 letter to the editor in the magazine 
Nature, the prolific statistician I. J. Good3 

pointed out the more relevant concern: 
if a previously battered woman has been 
murdered, what is the probability that her 
batterer committed the crime? Good, using 
a few simplifying assumptions, expressed the 
chances of this as roughly one in 3. Clearly, 
the previous accusations of battery would be 
considered relevant evidence if we knew that 
one in 3 murdered women were murdered by 
their batterers.

Let us redo this argument without 
simplifying assumptions, but instead by 
using 1992 data and calculating the relevant 
probability directly using Bayes’ rule. The 
data for this exercise were taken from the 
Clark County Prosecuting Attorney webpage 
on domestic violence (bit.ly/1u32oIq) and 
a 2010 New York Times article by Steven 
Strogatz.4 All calculations are using data for 
women only.

In this example, the notation B represents 
“woman battered by her husband, boyfriend, 
or lover”, M represents the event “woman 
murdered”, and by extension, M, B denotes 
“woman murdered by her batterer”. Our goal is 
to compare P(M, B | M) to P(M, B | B).

In 1992, the population of women 
in the United States was approximately 
125 million. That year, 4936 women were 
murdered. So, one marginal probability, P(M) 
= 4936/125 000 000 = 0.000 04, or about one 
in 25 000. Approximately 3.5 million women 
are battered every year, so we estimate P(B) = 

0.028 (3.5 million divided by 125 million). That 
same year 1432 women were murdered by their 
previous batterers, so the marginal probability 
of that event is P(M, B) = 1432/125 000 000 = 
0.000 01, or one in 87 290, and the conditional 
probability, P(M, B | B) is 1432 divided by 3.5 
million, or 1 in 2444. These are the numbers 
Dershowitz used to obtain his estimate that 
about 1 in 2500 battered women go on to be 
murdered by their batterers.

Our goal is to calculate the probability 
of a murdered woman being murdered by her 
batterer. Using Bayes’ rule, we have 

P(M, B | M) = P(M | M, B) P(M, B) / P(M)

The conditional probability in the numerator, 
P(M | M, B), is simple enough, for the 
probability of a woman being murdered, 
given she has been murdered by her batterer, 
is 1. So, P(M, B | M) is just the ratio of two 
probabilities: P(M, B | M) = P(M, B)/P(M) 
= 0.000 01/0.000 04 = 0.29, or about 1 in 3.5 
– slightly lower than I. J. Good’s estimate, but 
obtained using hard data without the need for 
his simplifying assumptions.

Alan Dershowitz provided the jury 
with an accurate but irrelevant probability. A 
murdered woman having been murdered by her 
batterer is 709 times more likely than a battered 
woman being murdered by her batterer: 
P(M, B | M) ≈ 709 × P(M, B | B). The 
reasoning is subtle and so we must take care in 
navigating such waters, but the reward is great.

Fu
se

/T
hi

nk
st

oc
k

august201518



Of course, we could take the same pathway 
that we followed with the mammogram 
example, and estimate the probability directly. 
We note that in 1992 there were 4936 women 
murdered, of whom 1432 were murdered 
by men who had previously battered them. 
Thus P(M, B | M) = 1432/4936 = 0.29. We 
went through the Bayesian flip to make the 
mechanics explicit. The component pieces will 
not always be so readily obtained.

Brown revisited

Let us return, finally, to the case of Troy 
Brown, our motivating example, and 
consider what the inferences would have 
been had the prosecution used Bayes’ rule. 
We use the notation “DNA” to represent 
the event “DNA evidence matches the 
accused”, I to represent “innocence”, and G 
to represent “guilt”. 

Our goal is to compare P(I | DNA) to 
P(DNA | I). The data for this example were 
obtained from the Oyez Project website 
(bit.ly/1fbDnEP), an online archive for the 
Supreme Court.

Recall that the prosecution claimed 
the random match probability for the 
DNA evidence was one in 3 million, or 
0.000 000 33. That number represents the 
probability of the DNA found at the crime 
scene randomly matching that of Brown if 
the DNA did not in fact come from him (i.e., 

P(DNA | I)). That is one of the three pieces 
we need to estimate P(I | DNA). 

The other term in the numerator is 
P(I), the marginal probability that Brown 
did not commit the crime. In this context we 
may consider this probability as the “weight 
of other available evidence”. If there were 
only two possible perpetrators, each equally 
culpable in prospect, innocence and guilt 
would be equally likely and we could choose 
0.5 for this probability, thereby making 
P(I) = P(G).

If we consider the prosecution’s case to 
be largely circumstantial (Brown lived in the 
same trailer park as the victim, but did not 
completely match the victim’s description 

of her attacker), we could choose a larger 
number for P(I), say 0.9. That would 
represent only a one in 10 chance of guilt 
without considering DNA evidence. 

Or, if there were no other evidence 
besides the DNA, the presumption of 
innocence would suggest that the 1 million 
post-pubertal males within a day’s travel 
would be equally likely suspects. In this case 
P(G) would be one in 1 million, or 0.000 001.

In this example, we will consider all three 
probabilities. 

The last piece is the denominator, the 
marginal probability of the DNA evidence, 
P(DNA). This represents the probability 
of finding such a DNA match, given the 
innocence or guilt of the accused (i.e., it 
represents all the ways we might have obtained 
this evidence; it is either there because Troy 
Brown is guilty, or because he is innocent and 
the DNA randomly matches his DNA): 

P(DNA) 
= P(DNA | I)P(I) + P(DNA | G)P(G)

P(DNA | I) has already been estimated by 
the genetics experts as 0.000 000 33 (we will 
return to the reasonableness of this estimate 
shortly). P(I) is a value we have chosen to 
represent the “weight of other evidence” (we 
will use 0.5, 0.9 and 0.000 000 1 as examples) 
and P(G) is its complement, 1 – P(I). 

To solve for P(DNA), we only need to 
estimate P(DNA | G). This one is easy. If the 
accused is guilty, by definition the probability 
of his DNA matching the source is 1! So, if 
we use 0.5 for the probability of innocence 
and guilt, we get P(DNA) = 0.000 000 33 × 
0.5 + 1 × 0.5 = 0.500 000 167. To all intents 
and purposes, if innocence and guilt are 

Table 1. Calculation details of P(DNA)

P(DNA) = P(I) × P(DNA | I) + P(G) × × P(DNA | G)

0.5 = 0.5 × 0.000 000 33 + 0.5 × 1

0.1 = 0.9 × 0.000 000 33 + 0.1 × 1

0.000 001 = 0.999 999 × 0.000 000 33 + 0.000 001 × 1

Table 2. Calculation details of P(I | DNA)

P(I | DNA) = P(DNA | I) × P(I) / / P(DNA)

 0.000 000 3 = 0.000 000 33 × 0.5 / 0.500 000

 0.000 003 0 = 0.000 000 33 × 0.9 / 0.100 000

 0.25 = 0.000 000 33 × 0.999 999 / 0.000 001
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equally likely outcomes, then P(DNA | I) is 
small enough to be ignorable, and so P(DNA) 
is 0.5. This represents the rare case where 
the two marginal probabilities are equal (or 
close enough to equal), P(I) ≈ P(DNA). In 
this case, the prosecutor gets lucky, because 
P(DNA | I) = P(I | DNA) = 0.000 000 33. 

However, as previously stated, innocence 
and guilt do not appear equally likely in 
this case, as all other available evidence was 
circumstantial. In that case, if we assume that 
the marginal probability of innocence is much 
higher, P(I) = 0.9, we get a fairly different 
result. If we substitute 0.9 for P(I) and therefore 
0.1 for P(G), we get P(DNA) = 0.1 (again, 
P(DNA | I) is small enough to be ignorable). 
Now that P(DNA) does not equal P(I), the 
result we obtain for P(I | DNA) is 0.000 003, 
or one in 333 333. That is still a small chance 
of being innocent, given the evidence, but it is a 
number that is nine times larger than the value 
claimed by the prosecution.

Finally, if there were no other evidence 
than the DNA match and the presumption 
of innocence means that there were a 
million other males close enough to be 
the perpetrator, the probability of Brown’s 
innocence, given the DNA is 0.25. And yes, 
that still means that he is three times more 
likely to be guilty than innocent, but 25% 
surely implies a reasonable doubt.

A summary of the calculations for 
P(DNA) is given in Table 1 and the parallel 
calculations for P(I | DNA) are in Table 2.

Obviously, the choice of prior for P(I) 
is seriously consequential; any accumulated 
evidence that affects our estimate of P(I) 
matters. For example, over the course of the 
trial, it was revealed that two of Brown’s 
brothers lived in the same trailer park as the 
victim, and Brown had two other brothers 
who lived within a 500-mile radius of the 
crime scene. 

It does not take a genetics expert to 
realise that two brothers are much more likely 
to have similar DNA than two randomly 
sampled individuals from the population. 
The probability of any two brothers having 
matching DNA depends on a number of 
unobserved genetic factors, but it could be as 
high as 1 in 66, P(DNA | I) = 0.015. This 
number is still fairly small, but considerably 
larger than one in 3 million. If we use 0.015 
for P(DNA | I) and continue to use P(I) = 
0.9, we estimate the P(I | DNA) to be 0.12, 
certainly enough for a reasonable doubt. 

Priors aren’t data, or are they?

Bayes’ rule is a powerful tool for calculating 
the P you want to know. It includes a 
mechanism for weighting the strength of 
evidence in the likelihood part of a formula. 
When calculating P(theory | data) and having 
been given P(data | theory) – the likelihood 
of the data given the theory – we know that 
we must learn or estimate the prior P(theory) 
to do the Bayesian flip. 

In the mammogram and O. J. Simpson 
examples, all of the components could be 
estimated from data, but we are not always 
so fortunate. In the Brown case we had to 
estimate the “weight of other evidence” to 
complete our calculations. What happens 
when we try to make this inference without 
having any idea about the incidence rate? 

In most decision-theoretic procedures, 
the possible events in P(theory) are 
mutually exclusive and exhaustive. The job 
of the Bayesian inference-maker is to take 
the information provided by the data in 
P(data | theory) and temper it with what is 
known or not known about P(theory). In 
the cartoon below (xkcd.com/1132), the 
Bayesian statistician will wager $50 that 
the sun has not gone nova because there is 
considerable evidence beyond the dice roll to 
suggest it has not. In other examples, the two 
complementary probabilities in P(theory) 
may be equal, indicating no preconceived 

notions about which outcome is more likely. 
We do not have to proceed with only one 
estimate of P(theory); a range of probabilities 
may be supplied, providing us with a natural 
way to create a range of plausible posterior 
probabilities for P(theory | data).

When considering the weight of other 
evidence (without DNA) in the Brown case, 
we recognised that innocence was more 
likely than guilt, and thus we could weight 
the value of the DNA evidence accordingly. 
In the O. J. Simpson example, the prior 
probability of a woman being murdered by 
her batterer was directly estimable from other 
data sources, and we observed that multiple 
pathways led us to the same conclusion about 
how likely it is that a murdered woman had 
been killed by her batterer. 

The unifying theme is that the prior 
P(theory) is used to refine our posterior 
inferences about P(theory | data). It is not 
to be lamented or ignored. And, as more 
information is made available to us, we can 
use previous posterior probabilities as new 
priors in our estimation. We can correct the 
fallacy, whether made by a prosecutor, defence 
attorney, or social scientist, and be with 
the P we love.
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